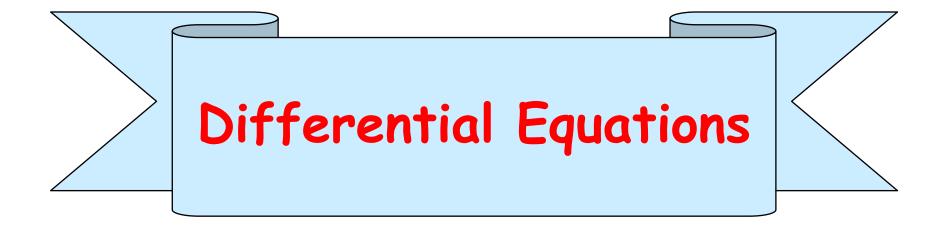


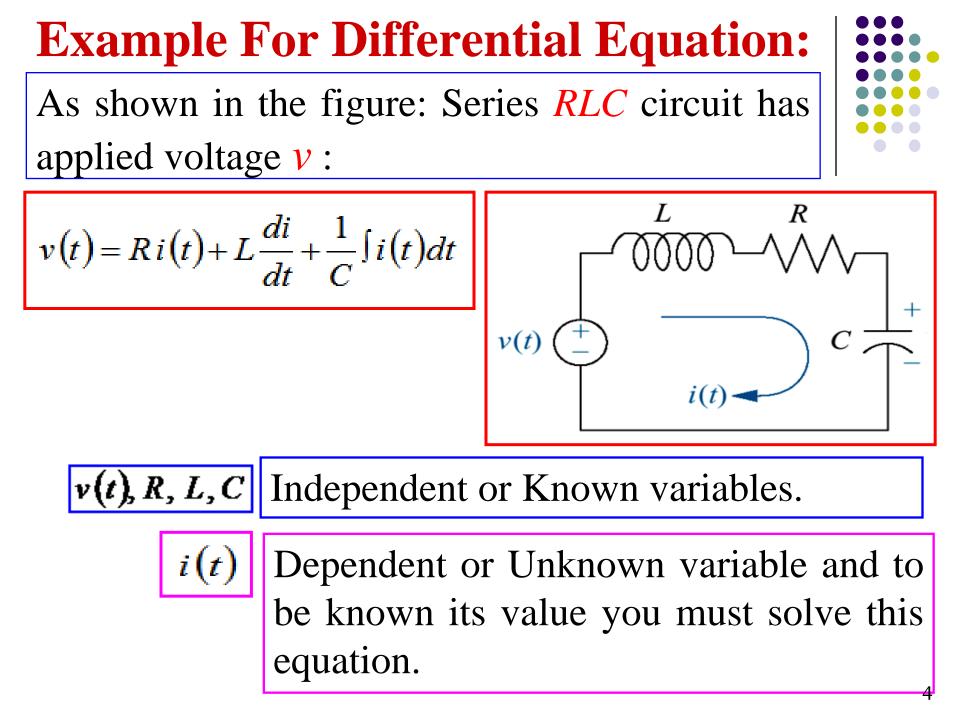
Laplace Transform, Transfer **Function and Electrical Systems Modeling** By **Dr. Ayman Yousef Modified By Dr. Emad Sami**

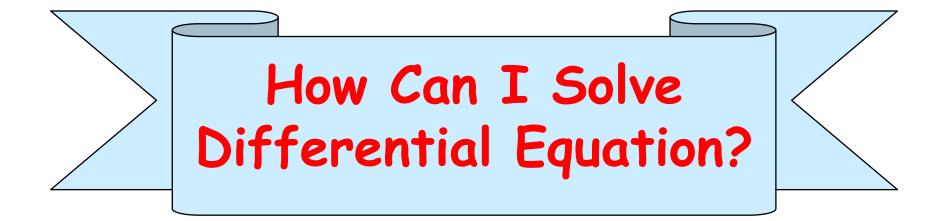


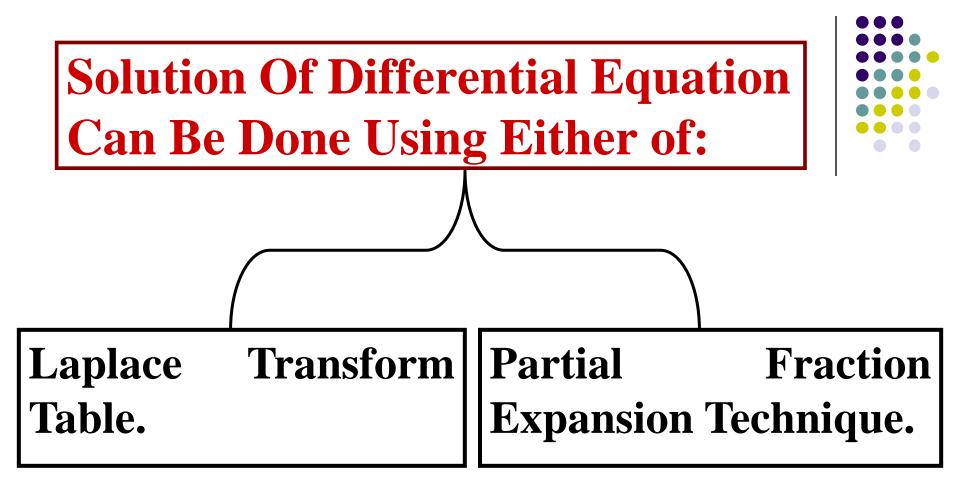
Differential Equation means that:

states how a rate of change "differential" in one variable is related to an other variable.

are equations generally contains derivatives and integrals of a dependent variable with respect to an independent variables.

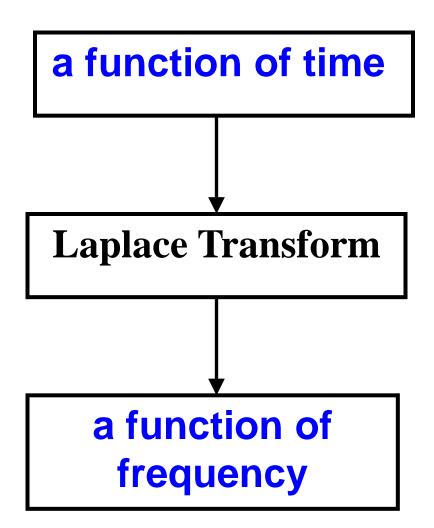


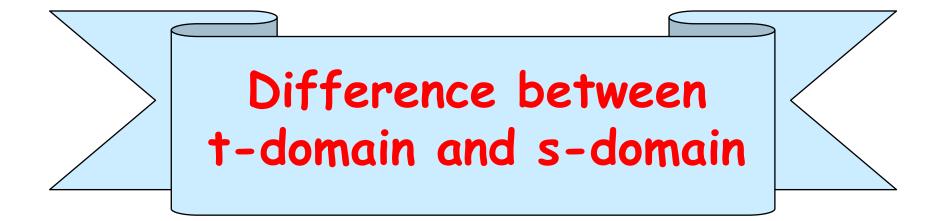




Laplace Transform Method is famous method used in solving the differential equations because:

Both transient component and steady-state component of the solution can be obtained simultaneously.





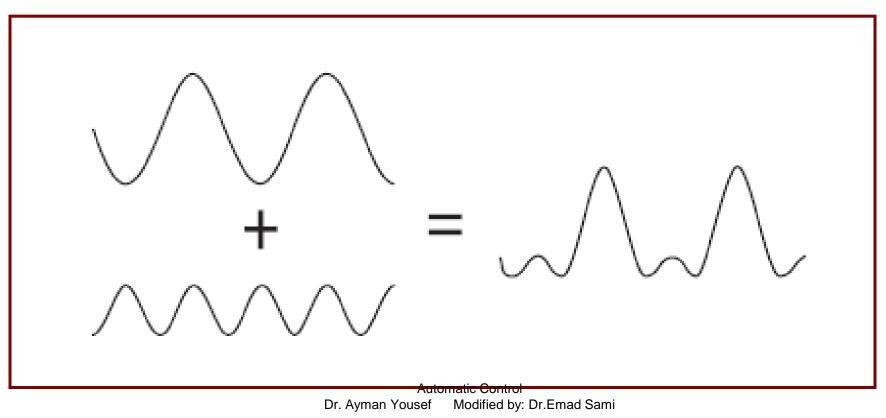
t-domain and s-domain:

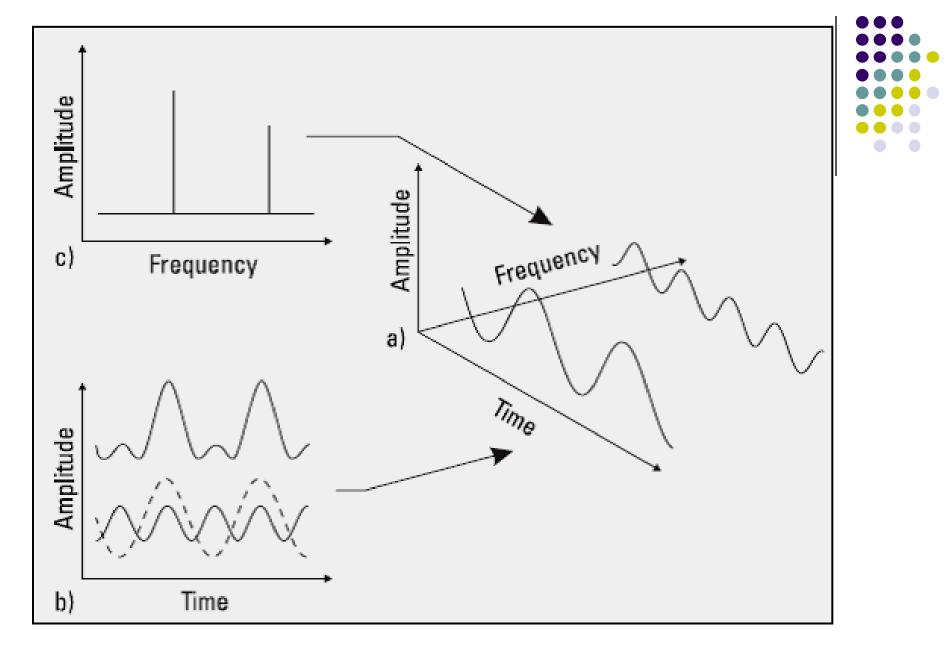
* These are two ways of viewing the same thing.

- * Are used in understanding the behavior of
- a dynamic system (dynamic system: is the system that has variables change w.r.t time).

Time domain: t-domain	Freq. domain: s-domain	
* we measure how long something takes.	we measure how fast or slow it is.	
* what happens in the time domain as temporal	* what happens in the time domain as spectral	

Any real-world signal can be represented by only one combination of sine waves.
In the diagram, a waveform is represented as the sum of two sine waves.



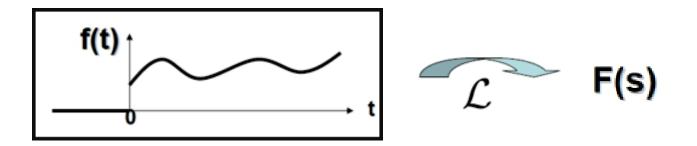


Laplace transform

Definition: For a function f(t) (f(t)=0 for t<0),

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt$$

(s: complex variable)



We denote Laplace transform of f(t) by F(s).

Properties of Laplace transform 1- Differentiation

the Laplace transform of a time derivative is

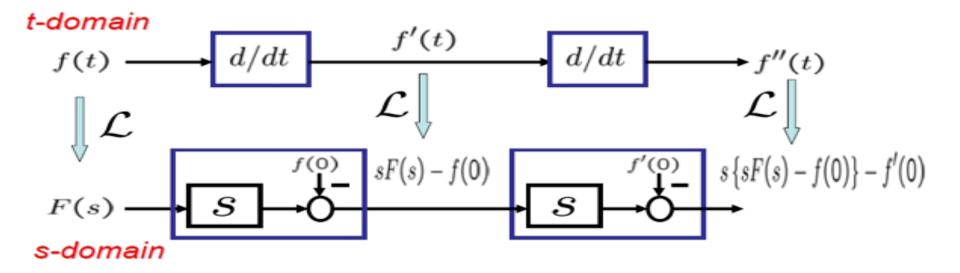
$$\mathcal{I}[f(t)] = F(s)$$

$$\mathcal{I}\left[\frac{df(t)}{dt}\right] = sF(s) - f(0)$$

$$\mathcal{I}\left[\frac{d^{n}f(t)}{dt^{n}}\right] = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-2}f'(0) - f^{(n-1)}(0)$$

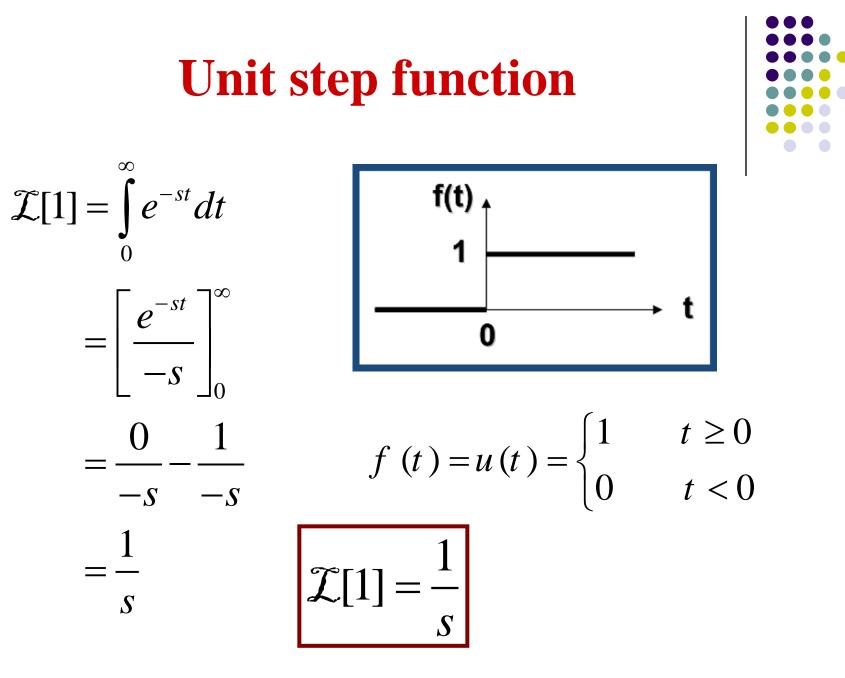
where f(0), f'(0) are the initial conditions, or the values of f(t), d/dt f(t) etc. at t = 0

$$\mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0)$$

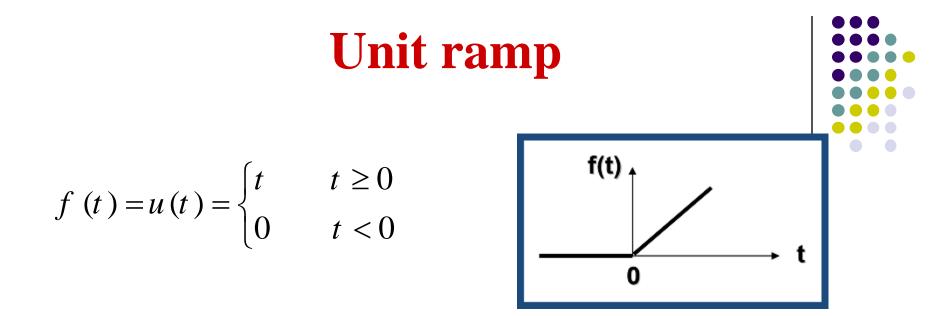


2- Linearity:

$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$



Automatic Control Dr. Ayman Yousef Modified by: Dr.Emad Sami

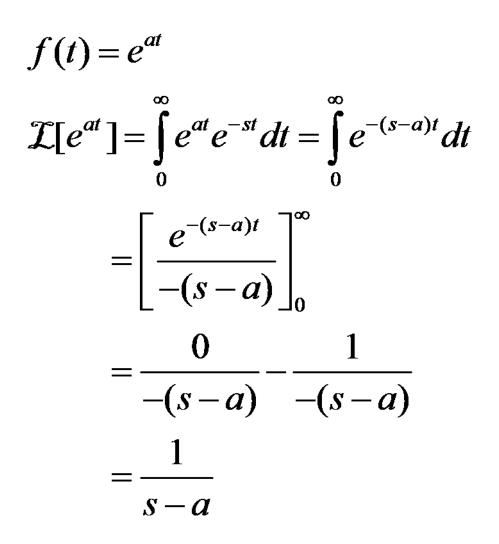


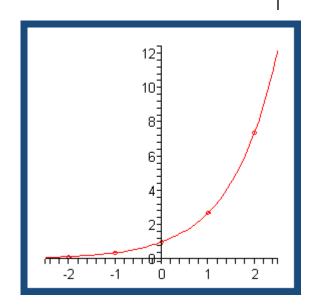
$$\mathcal{I}[t] = \int_{0}^{\infty} e^{-st} t \, dt = \left[\frac{t e^{-st}}{-s} - \frac{e^{-st}}{-s}\right]_{0}^{\infty} = \frac{1}{s^{2}}$$

similarly

$$\mathcal{I}[t^n] = \frac{n!}{s^{n+1}}$$

Exponential function

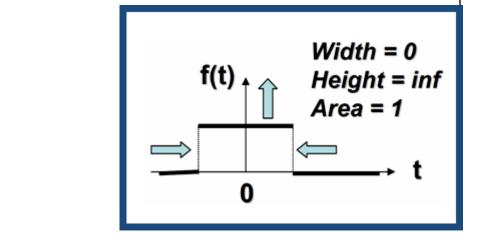




$$\mathcal{I}[e^{at}] = \frac{1}{s-a}$$

Automatic Control Dr. Ayman Yousef Modified by: Dr.Emad Sami

Impulse function

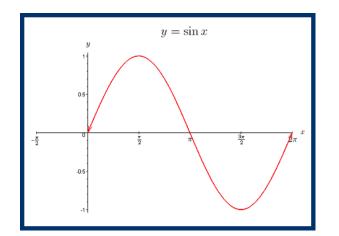


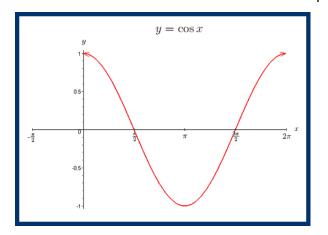
$$f(t) = \delta$$

$$\mathcal{I}[\delta(t)] = \int_{0-}^{\infty} \delta(t) e^{-st} dt = e^{-st} \Big|_{t=0} = 1$$

21

Sine and cosine functions





$$\mathcal{I}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{I}[\cos\omega t] = \frac{s}{s^2 + \omega^2}$$

3- Integration:

 $\mathcal{I}\left[\int_{0}^{t} f(t)dt\right] = \frac{F(s)}{s}$

4- Constant Multiplication:

$$\mathscr{L}[af(t)] = aF(s)$$

5- Real Shift Theorem:

$$\mathscr{L}[f(t-T)] = e^{-Ts}F(s) \text{ for } T \ge 0$$

6- Initial Value Theorem:

$$f(0) = \lim_{t \to 0} [f(t)] = \lim_{s \to \infty} [sF(s)]$$

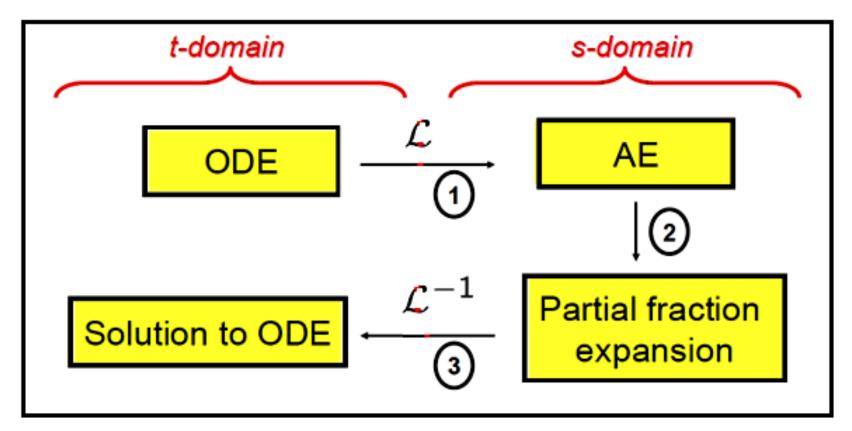
7- Final Value Theorem:

$$f(\infty) = \lim_{t \to \infty} [f(t)] = \lim_{s \to 0} [sF(s)]$$

Common Laplace transform pairs		•
<i>Time function</i> $f(t)$	Laplace transform $\mathscr{L}[f(t)] = F(s)$	
unit impulse $\delta(t)$	1	•
unit step 1	1/s	•
unit ramp t	$c = 1/s^2$	
t^n	$\frac{n!}{s^{n+1}}$	
e ^{-at}	c^{-1} $\frac{1}{(s+a)}$	
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	
sin <i>ωt</i>	$\frac{\omega}{s^2 + \omega^2}$	
	$\frac{s}{nsform}$ $\frac{s}{s^2 + \omega^2}$	
$e^{-at} \sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	
$e^{-at}(\cos\omega t - \frac{a}{\omega}\sin\omega t)$	$\frac{s}{\left(s+a\right)^2+\omega^2}$	26

An advantage of Laplace transform

 We can transform an ordinary differential equation (ODE) into an algebraic equation (AE).



* Solution of ODE means SEPARATION of the variables such that :

- t in Right Hand Side
- y(t) In Left Hand Side

* To find the final value of y(t) then use the final value theorem of laplace

Example 1 (distinct roots)

ODE with initial conditions (ICs)

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} - 2y(t) = 0, \quad y(0) = 0, \quad y'(0) = 3$$

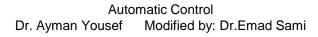
$$y''(t) + y'(t) - 2y(t) = 0$$

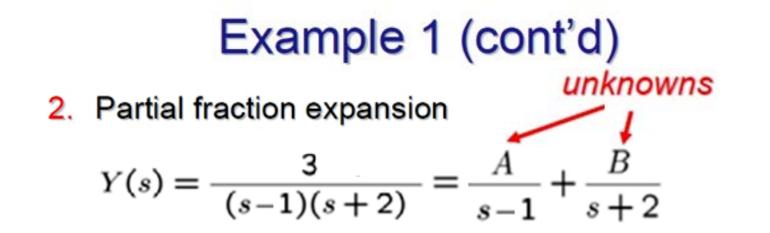
1. Laplace transform

$$S^{2}Y(s) - sy(0) - y'(0) + \{sY(s) - y(0)\} - 2Y(s) = 0$$

$$\mathcal{L}\left\{y''(t)\right\} \qquad \mathcal{L}\left\{y'(t)\right\} \qquad \mathcal{L}\left\{2y(t)\right\}$$

$$\Longrightarrow \quad Y(s) = \frac{3}{(s-1)(s+2)}$$





To obtain A:

Multiply both sides by (s-1) & let s go to +1:

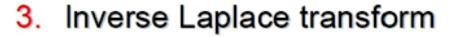
$$(s+1)Y(s)|_{s\to+1} = A + (s+1)\frac{B}{(s+2)}\Big|_{s\to+1} \implies A = 1$$

To obtain B:

Multiply both sides by (s+2) let s go to -2:

$$(s+2)Y(s)|_{s\to -2} = (s+2)\frac{A}{(s-1)}\Big|_{s\to -2} + B \implies B = -1$$

Example 1 (cont'd)



$$Y(s) = \frac{A}{s-1} + \frac{B}{s+2} = \frac{1}{s-1} + \frac{-1}{s+2}$$
$$\implies \qquad y(t) = \left(\underbrace{1}_{A} e^{t} \underbrace{-1}_{B} e^{-2t}\right)$$

If we are interested in only the final value of y(t), apply Final Value Theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{3s}{(s+1)(s+2)} = 0$$

Example 2 (distinct roots)

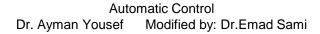
ODE with initial conditions (ICs)

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 5, \quad y(0) = -1, \quad y'(0) = 2$$

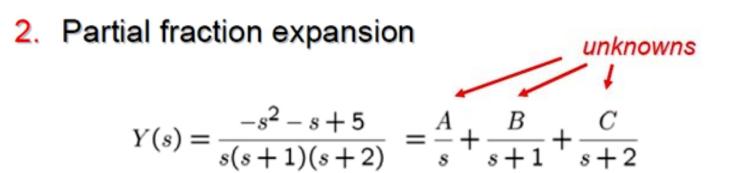
$$y''(t) + 3y'(t) + 2y(t) = 5$$

1. Laplace transform

$$S^{2}Y(s) - sy(0) - y'(0) + 3\{sY(s) - y(0)\} + 2Y(s) = \frac{5}{s}$$
$$\mathcal{L}\left\{y''(t)\right\} \qquad \qquad \mathcal{L}\left\{y'(t)\right\}$$
$$\implies Y(s) = \frac{-s^{2} - s + 5}{s(s+1)(s+2)} \qquad \qquad \text{distinct roots}$$



Example 2 (cont'd)



Multiply both sides by s & let s go to zero:

$$sY(s)|_{s\to 0} = A + s \frac{B}{s+1} \Big|_{s\to 0} + s \frac{C}{s+2} \Big|_{s\to 0} \implies A = sY(s)|_{s\to 0} = \frac{5}{2}$$

Similarly,
$$B = (s+1)Y(s)|_{s\to -1} = \dots = -5$$
$$C = (s+2)Y(s)|_{s\to -2} = \dots = \frac{3}{2}$$

Example 2 (cont'd)

3. Inverse Laplace transform

$$Y(s) = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} = \frac{\frac{5}{2}}{s} + \frac{-5}{s+1} + \frac{\frac{3}{2}}{s+2}$$
$$\implies y(t) = \left(\underbrace{\frac{5}{2}}_{A} + \underbrace{(-5)}_{B} e^{-t} + \underbrace{\frac{3}{2}}_{C} e^{-2t}\right)$$

If we are interested in only the final value of y(t), apply Final Value Theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{-s^2 - s + 5}{(s+1)(s+2)} = \frac{5}{2}$$

Example 3 (repeated roots)

ODE with initial conditions (ICs)

$$\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + 8\frac{dy(t)}{dt} + 4y(t) = 2\delta(t), \quad y(0) = y'(0) = y''(0) = 0$$
$$y'''(t) + 5y''(t) + 8y'(t) + 4y(t) = 2\delta(t)$$

Laplace transform

$$s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0) - \mathcal{L}\left\{y'''(t)\right\} + 5\left\{s^{2}Y(s) - sy(0) - y'(0)\right\} - \mathcal{L}\left\{5y''(t)\right\} + 8\left\{sY(s) - y(0)\right\} - \mathcal{L}\left\{8y'(t)\right\} + 4Y(s) - \mathcal{L}\left\{4y(t)\right\}$$

$$\implies Y(s) = \frac{2}{(s+1)(s+2)^2}$$
 Repeated roots

Example 3 (cont'd)

$$Y(s) = \frac{2}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{(s+2)^2} + \frac{C}{s+2}$$

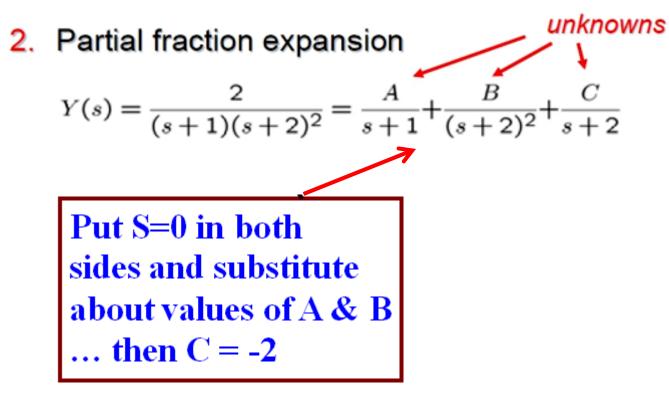
To obtain A:

$$(s+1)Y(s)|_{s\to -1} = A + (s+1)\frac{B}{(s+2)^2}\Big|_{s\to -1} + (s+1)\frac{C}{s+2}\Big|_{s\to -1} \implies A = 2$$

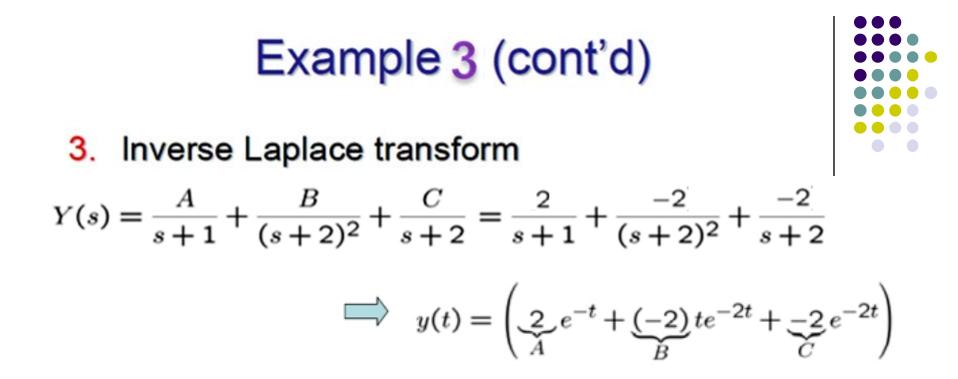
To obtain B:

$$(s+2)^{2}Y(s)\big|_{s\to-2} = (s+2)^{2} \frac{A}{s+1}\Big|_{s\to-2} + B + (s+2)C\big|_{s\to-2} \qquad \Longrightarrow \quad B = -2$$

Example 3 (cont'd)



$$C = -2$$



If we are interested in only the final value of y(t), apply Final Value Theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{2s}{(s+1)(s+2)^2} = 0$$